How to write a good
Journal of Solid State Circuits paper

Bram Nauta
JSSC Editor in Chief
University of Twente, The Netherlands
b.nauta@utwente.nl
http://icd.ewi.utwente.nl

[A-SSCC 2008, Fukuoka, Japan]
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• Writing tips
 – Paper outline
 – General tips

• How NOT to write a JSSC paper
Outline

• **About the Journal**
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• **Writing tips**
 – Paper outline
 – General tips

• **How NOT to write a JSSC paper**
History

- Established in 1966
 - 4 issues per year
- Volume 1, nr 1: ISSCC 1966 issue
- Purpose= archive
TODAY

- *The* Nr 1 IEEE Journal
- By far: most downloaded IEEE Journal
- By far: most cited in all US Patents
 - Over all technical disciplines
References in patents from top 25 companies to top 20 publishers

IEEE cited 4x more than nearest competitor
Top cited IEEE Journals in patents

<table>
<thead>
<tr>
<th>Rank</th>
<th>Title</th>
<th>Cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IEEE Journal of Solid-State Circuits</td>
<td>14,765</td>
</tr>
<tr>
<td>2</td>
<td>IEEE Transactions on Electron Devices</td>
<td>8,824</td>
</tr>
<tr>
<td>3</td>
<td>IEEE Transactions on Communications</td>
<td>8,678</td>
</tr>
<tr>
<td>4</td>
<td>IEEE Photonics Technology Letters</td>
<td>8,383</td>
</tr>
<tr>
<td>5</td>
<td>Journal of Lightwave Technology</td>
<td>5,989</td>
</tr>
<tr>
<td>6</td>
<td>Proceedings of the IEEE</td>
<td>5,338</td>
</tr>
<tr>
<td>7</td>
<td>IEEE Transactions on Magnetics</td>
<td>5,071</td>
</tr>
<tr>
<td>8</td>
<td>IEEE Transactions on Computing</td>
<td>4,393</td>
</tr>
<tr>
<td>9</td>
<td>IEEE J on Selected Areas in Communications</td>
<td>4,148</td>
</tr>
</tbody>
</table>
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• Writing tips
 – Paper outline
 – General tips

• How NOT to write a JSSC paper
Conferences

- Fast publication
- Usually a smaller idea
 - Benchmark: Known circuit in new technology
 - Smaller trick can be o.k.
 - depends on conference
- Just accept or reject; no rewrite
 - It may be incomplete
 - It may lack key references
- Good for networking and Q&A
- Widely available on IEEEExplore
Journal publication

• Academic reputation
 – Journals have ~4x more status than conferences

• Reviewed Journal gives a “quality stamp”
 – Reviewers demand corrections & clarifications

• Archive your work
 – Wider scope
 – More theory
 – More technical information
 – More Educational
 – More references
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – **Organization of the Journal**
 – What kind of papers?

• Writing tips
 – Paper outline
 – General tips

• How NOT to write a JSSC paper
Organization regular JSSC papers

Editor

Associate Editor

Author

Reviewers
Associate Editors

- Baas, Bevan
- Behzad, Arya
- Flynn, Michael
- Gharpurey, Ranjit
- Gillingham, Peter
- Halonen, Kari
- Karanicolas, Andrew
- Kim, Beomsup,
- Leenaerts, Domine
- Liu, Shen-juan,
- Mok, Philip
- Nairn, David
- Natarajan, Shreedhar
- Rusu, Stefan
- Razavi, Behzad,
- Savoj, Jafar
- Shaeffer, Derek
- Shepard, ken
- Young, Darrin
Special Issues on conferences

- December ISSCC-analog, RF (issue)
- January ISSCC-dig+rest (issue)
- April VLSI (issue)
- May RFIC (section)
- July ESSCIRC (issue)
- August CICC (issue)
- September BCTM (section)
- October CSIC (section)
- November A-SSC (section)
Organization special Issue

Editor

Guest Editor

Author

Associate Editor

Reviewers

Reviewers
Procedure (regular papers)

• Author submits manuscript to Editor
• Editor sends to Associate editor
• Associate Editor sends to reviewers
• Associate Editor makes decision:
 – AWR accept with revisions 😊
 – REJ reject
 – REF refer to other Journal

It's not a democratic process!!!!!!!!!!!
Procedure (regular papers)

• Author rewrites
 – Give list of how you changed manuscript based on reviewers comments
 – Do not reply to reviewer but change your manuscript
• Associate Editor makes final decision
• OR: Associate Editor organizes second review

• Author submits final package to Associate Editor
• Associate Editor inspects and forwards to Editor
• Editor compiles issues and sends to IEEE
Time schedule (regular papers)

- Delay to first decision: ~100 days
- Delay author rewrite: ~100 days
- Publication delay: ~140 days
- Total delay: ~340 days
Origin of regular papers

• 365 submissions/year: 1/day
 – Asia 40% (Taiwanese Universities)
 – USA 25%
 – EU 25%
 – ROW 10%

• Same regional distribution as ISSCC
• 90% is analog/RF!!
Accept/reject regular papers

- Accept 36%
- Reject 58%
- Refer to other Journal 3%
- Withdrawn 3%

Main reject reasons:
- Not enough novelty/innovation
- Not enough news w.r.t. prepublication
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• Writing tips
 – Paper outline
 – General tips

• How NOT to write a JSSC paper
What papers are good for JSSC?

- IC Implementation oriented
 - Not: microwave PCP/ modeling/ device only
- Not too much theory (Better use TCAS)
- Integrated Circuit needed
- But to have an IC is not enough!

The work must be of HIGH Quality
What is high quality?

• Must describe an **INNOVATIVE IDEA**
 – Not just a permutation
 – Not a know circuit in new technology
 – Not a combination of known techniques
 – But a real new concept / invention

• **AND** idea must be proven on IC

• **AND** idea must significantly advance state-of-art
Prepublication

• ~90% of submitted papers have prepublication at conference(s)
 – That’s ok

• Conferences are available on IEEEExplore

• So a JSSCC paper should add significant information to the prepublications
Prepublication policy

• “A JSSCC paper should be worth reading for a person who has read the conference paper.”
 – Better description of state-of-art
 – More theory + proof of concept
 – More measurements
 – More discussion (mismatch, no-idealities etc)
 – More benchmark, more discussion
 – More references
Prepublication policy

- NOT each conference paper deserves to be a JSSC paper
- NOR each work without prepublication deserves to be a JSSC paper
- It’s a delicate thing, but all about QUALITY
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• **Writing tips**
 – Paper outline
 – General tips

• How NOT to write a JSSC paper
A Typical paper outline

- Title
- Abstract
- Introduction
- Body
- Experimental results
- Discussion
- Conclusion
- references
The Title

• Must describe the paper
• Not too vague
 – “A novel receiver”
 • Do not use “novel” anyway
 – “5-GHz RF Frontends for Ultra-Low-Voltage and Ultra-Low-Power Operations”
 • How much is Ultra?
• But exactly what is really new:
 – “Noise canceling technique for wideband receivers”
• Or exactly what is achieved
 – “A 1.5GHz 1.3dB NF, 10mW down converter in 65nm CMOS for GPS applications”
• Or both!
Abstract

• 1 paragraph
• Exactly what paper is about
• Can have overlap with conclusions
• Keywords, indexing terms
 – Use many!!
 – So your paper can be found
 – You will be cited a lot
Introduction

• Describe the problem you solve
 – Open the subject
 – Zoom in step by step
 – Describe your assumptions
 – Each step is one paragraph

• Describe the state-of-art
 – Use plenty of references

• Tell basic your idea
 – This motivates the reader to continue
 – Cite your prepublications and tell the difference

• Give outline
The body

• Explain your key idea

• Build up Step by step
 – One thinking step at the time
 – Each step is one paragraph

• Proof it makes sense
 – Use mathematics
 – Give exactly your boundary conditions
 – Give results in comprehensive way
The body

• Be self-critical and realistic:
 – does it really make sense?
• E.g. for a linearity improvement technique:
 – If power dissipation is larger
 – And noise is also larger
 – And you know that $P \sim SNR$: does this make sense?
• Is it just the technology or your smartness?
 – E.g. speed $\sim f_T$ or f_{max}
• Are practical boundary conditions met?
 – VCO @ high frequency but $P_{out} = -30\text{dBm}$
Experimental Results

• Describe exactly what has been measured and how.
 – Describe setup
 – “Bio Biased”?
 – Probe or PCB?
 – What equipment?
 – How many samples?
 – PVT?
 – Batch to batch spread?

• Experiment must be repeatable and of practical use for industry.
Experimental Results

• Compare with theory / simulations
• Does it prove your idea and theory?
• Always tell if a result is measures. Simulated or calculated.

“Figure x shows the noisefigure versus frequency”

→ is this measured? Simulated? Calculated? Estimated?
IC realization

- Give chip photograph
 - Dimensions
 - What is what
- Give technology + options
Discuss results

• Compare to state-of-art in fair way
 – Show all relevant data + papers
 – Use table

• Use common FoM definitions
 – ADC, VCO, filter

• Be careful to define your own FoM
 – Do not misuse FoM for showing off
 – Power ~ SNR. BW makes sense
 – Power/bondpad is NOT a good FoM!!
Discuss results

• Help the reader to interpret the results
• Absolute accuracy needed?
 – show many samples, proof batch to batch robustness
• Matching needed?
 – show many samples
• Calibrated circuits?
 – describe what input signal is used/required. When does it go wrong? How realistic is it?
Discuss Results:

A useless PLL benchmark:

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Unit</th>
<th>This Work</th>
<th>[6]</th>
<th>[13]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>—</td>
<td>0.18-μm CMOS</td>
<td>0.18-μm CMOS</td>
<td>0.25-μm SiGe BiCMOS</td>
</tr>
<tr>
<td>Frequency</td>
<td>GHz</td>
<td>10.3</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V</td>
<td>1.8</td>
<td>1.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>mW</td>
<td>113</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Locking Range</td>
<td>GHz</td>
<td>10.1 ~ 11</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Peak-to-Peak Jitter</td>
<td>ps</td>
<td>3.72</td>
<td>6.5</td>
<td>4.8</td>
</tr>
<tr>
<td>RMS Jitter</td>
<td>ps</td>
<td>0.43</td>
<td>0.6</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Conclusions

• Start writing with this
• First make a bullet list for yourself
 – A hand full of bullets
 – So you know where to write towards
 – This gives your paper focus
• Conclusion should be readable without reading the whole paper
• Convince the reader

What did we learn?
References

• Include latest state of the art
 – For benchmark
• But also refer to the original papers
 – Go back in time!
 – Most references are younger than 5 years 😞
 – While most ideas are much older!
• Textbooks are useful too
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• Writing tips
 – Paper outline
 – General tips

• How NOT to write a JSSC paper
Writing tips:

A well written paper gives the impression of a good idea
Writing Tips

• If a paper is too complex:
 – Reviewers don't understand it
 – Reviewers don’t believe it
 – Reviewers will not like it

• If a paper is too simplistic
 – Reviewers think its nothing special
 – Even if the results are good
General writing tips

- Make your problem relevant
- Start with the “big picture”
- Take the reader by the hand
 - Step by step explanation
- Highlight innovation
- Do not give too many equations
- Do not give too much theoretical details
- Do not try to make a tutorial
General writing tips

• Do not use “very” but give the numbers
• Avoid to use “novel”
 – everything you don’t cite should be novel
• Use short sentences
• Use simple words
• One point per paragraph
 – First or last sentence is most important
 – The rest is explanation
General writing tips

• If you are stuck:
 – Tell a friend what you did.
 – Use the words & slides like on your conference paper
 – Polish the text later
• Let a fellow student read & comment
• Ask native speaker to correct language
• Polish, Polish, Polish
 – Reviewers hate mistakes!!
 – It iz raely anojing to raed tekst width misstakes
Figures

• Make the figures like a cartoon
 – Reader can understand idea by looking at figures + caption only

• Spend a lot of time to make good figures
 – Papers with bad figures almost always get rejected
Figures

- Must be readable in single column:
- Not good:
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• Writing tips
 – Paper outline
 – General tips

• **How NOT to write a JSSC paper**
Do NOT

• Publish the same material elsewhere
 – Reviewers+readers always see this; its unethical

• Change your paper after acceptance and before publication
 – E.g. remove reference to competitor
 – Reviewers always see this

• Use someone else´s ideas
 – “Someone else” is reading too

• Hide “unpleasant” measurements
Do NOT

• Fabricate or falsify results
 – Not tune bias for each measuring point
 – Not make few chips and measure different parameters on different chips
 – Or even completely falsify papers (!)
Some falsification issues

If you publish good results which are falsified

Then other engineers will try to use your idea

And find out it cannot work!

(and this is NOT good for YOUR career!!!
Fig. 16. Ring-VCO PLL closed-loop phase noise characteristic after additional divide-by-two (6 dB improvement).
Author x, BiCMOS circuit 2, Symposium y

Fig. 8 LNB frequency synthesizer phase noise
2 Designs, 2 technologies same Phase noise!

After divide by 8
Author x, BiCMOS circuit 3, Journal of Solid-State Circuits

Fig. 12. VCO’s output clock phase noise ($f = 9.953$ GHz, $V_{CC} = 3$ V, temperature $= 125$ °C).
Author x, CMOS circuit 4, Symposium 2

Fig.6 LC-VCO phase noise @ 10GHz, 125°C, 3V
The Difference of 2 plots:
(2 spurs added)
Fig. 16. Ring-VCO PLL closed-loop phase noise characteristic after additional divide-by-two (6 dB improvement).
Author x, BiCMOS circuit 6, Symposium 3

Fig. 8 LNB frequency synthesizer phase noise
Noise is same but now translated
Photoshopped chip photo (flip over x-axis)
Also the dust is symmetric!!!
Outline

• About the Journal
 – Yesterday and today
 – Journal versus Conference
 – Organization of the Journal
 – What kind of papers?

• Writing tips
 – Paper outline
 – General tips

• How NOT to write a JSSC paper
Summary

• IEEE Journal of Solid-State Circuit
 – Most downloaded, most cited in patents
• Needs an Innovative new idea
 – Working silicon is not enough
 – Must improve state-of-art
• Needs new material after prepublication
• Reviewers are demanding
• Your writing technique can help